|
17: |
|
FROM(X) |
→ CONS(X,n__from(s(X))) |
18: |
|
2ndspos#(s(N),cons(X,n__cons(Y,Z))) |
→ ACTIVATE(Y) |
19: |
|
2ndspos#(s(N),cons(X,n__cons(Y,Z))) |
→ 2ndsneg#(N,activate(Z)) |
20: |
|
2ndspos#(s(N),cons(X,n__cons(Y,Z))) |
→ ACTIVATE(Z) |
21: |
|
2ndsneg#(s(N),cons(X,n__cons(Y,Z))) |
→ ACTIVATE(Y) |
22: |
|
2ndsneg#(s(N),cons(X,n__cons(Y,Z))) |
→ 2ndspos#(N,activate(Z)) |
23: |
|
2ndsneg#(s(N),cons(X,n__cons(Y,Z))) |
→ ACTIVATE(Z) |
24: |
|
PI(X) |
→ 2ndspos#(X,from(0)) |
25: |
|
PI(X) |
→ FROM(0) |
26: |
|
PLUS(s(X),Y) |
→ PLUS(X,Y) |
27: |
|
TIMES(s(X),Y) |
→ PLUS(Y,times(X,Y)) |
28: |
|
TIMES(s(X),Y) |
→ TIMES(X,Y) |
29: |
|
SQUARE(X) |
→ TIMES(X,X) |
30: |
|
ACTIVATE(n__from(X)) |
→ FROM(X) |
31: |
|
ACTIVATE(n__cons(X1,X2)) |
→ CONS(X1,X2) |
|
The approximated dependency graph contains 3 SCCs:
{26},
{28}
and {19,22}.